Abscisic Acid-Induced H2O2 Accumulation Enhances Antioxidant Capacity in Pumpkin-Grafted Cucumber Leaves under Ca(NO3)2 Stress

نویسندگان

  • Sheng Shu
  • Pan Gao
  • Lin Li
  • Yinghui Yuan
  • Jin Sun
  • Shirong Guo
چکیده

With the aim to clarifying the role of the ABA/H2O2 signaling cascade in the regulating the antioxidant capacity of grafted cucumber plants in response to Ca(NO3)2 stress, we investigated the relationship between ABA-mediated H2O2 production and the activities of antioxidant enzymes in the leaves of pumpkin-grafted cucumber seedlings. The results showed that both ABA and H2O2 were detected in pumpkin-grafted cucumber seedlings in response to Ca(NO3)2 treatment within 0.5 h in the leaves and peaked at 3 and 6 h after Ca(NO3)2 treatment, respectively, compared to the levels under control conditions. The activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), and peroxidase (POD) in pumpkin-grafted cucumber leaves gradually increased over time and peaked at 12 h of Ca(NO3)2 stress. Furthermore, in the leaves of pumpkin-grafted cucumber seedlings, the H2O2 generation, the antioxidant enzyme activities and the expression of SOD, POD and cAPX were strongly blocked by an inhibitor of ABA under Ca(NO3)2 stress, but this effect was eliminated by the addition of exogenous ABA. Moreover, the activities and gene expressions of these antioxidant enzymes in pumpkin-grafted leaves were almost inhibited under Ca(NO3)2 stress by pretreatment with ROS scavengers. These results suggest that the pumpkin grafting-induced ABA accumulation mediated H2O2 generation, resulting in the induction of antioxidant defense systems in leaves exposed to Ca(NO3)2 stress in the ABA/H2O2 signaling pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Grafting cucumber onto luffa improves drought tolerance by increasing ABA biosynthesis and sensitivity

Balancing stomata-dependent CO2 assimilation and transpiration is a key challenge for increasing crop productivity and water use efficiency under drought stress for sustainable crop production worldwide. Here, we show that cucumber and luffa plants with luffa as rootstock have intrinsically increased water use efficiency, decreased transpiration rate and less affected CO2 assimilation capacity ...

متن کامل

Kinetin and 24-epibrassinolide - induced antioxidant responses in three wheat cultivars during drought stress in grain filling stage

The interaction of hormones plays an important role in plant equilibrium, especially, when plants encountered to environmental stresses, during both vegetative and generative stages. For this purposes, the experiment was designed based on the interaction effect of exogenous treatments of individual kinetin (Kin) and 24-epibrassinolide (24-EBL) and their dual application with two level of field ...

متن کامل

Chill-induced decrease in capacity of RuBP carboxylation and associated H2O2 accumulation in cucumber leaves are alleviated by grafting onto figleaf gourd.

BACKGROUND AND AIMS Chilling results in a significant decrease in Rubisco content and increased generation of reactive oxygen species (ROS) in cucumber (Cucumis sativus), a chilling-sensitive species. The role of roots in the regulation of the tolerance is unknown. Here, cucumber plants grafted onto figleaf gourd (Cucurbita ficifolia), a chilling-tolerant species were used to study the role of ...

متن کامل

Polyamine regulates tolerance to water stress in leaves of white clover associated with antioxidant defense and dehydrin genes via involvement in calcium messenger system and hydrogen peroxide signaling

Endogenous polyamine (PA) may play a critical role in tolerance to water stress in plants acting as a signaling molecule activator. Water stress caused increases in endogenous PA content in leaves, including putrescine (Put), spermidine (Spd), and spermine (Spm). Exogenous application of Spd could induce the instantaneous H2O2 burst and accumulation of cytosolic free Ca(2+), and activate NADPH ...

متن کامل

OsDMI3 is a novel component of abscisic acid signaling in the induction of antioxidant defense in leaves of rice.

Ca(2+) and calmodulin (CaM) have been shown to play an important role in abscisic acid (ABA)-induced antioxidant defense. However, it is unknown whether Ca(2+)/CaM-dependent protein kinase (CCaMK) is involved in the process. In the present study, the role of rice CCaMK, OsDMI3, in ABA-induced antioxidant defense was investigated in leaves of rice (Oryza sativa) plants. Treatments with ABA, H(2)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016